A New Compound from Chaenomeles sinensis (Thouin) Koehne

Hui Yuan GAO¹, Li Jun WU¹*, Masanori KUROYANAGI²

¹Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016 ²School of Bioresources, Hiroshima Prefectural University, 562 Nanatsukacho, Shobara, Hiroshima 727-0023 Japan

Abstract: A new dihydrochromone derivative, named chaenomone, was isolated from the twigs of *Chaenomeles sinensis* (Thouin) Koehne. The structure was determined by spectroscopic methods.

Keywords: Chaenomone, Chaenomeles sinensis, Rosaceae, twigs.

Chaenomeles sinensis (Thouin) Koehne (Rosaceae) is a special woody plant of eastern Asia, and distributes widely in China and Japan. According to the modern research, it shows the activity against pneumonia, pulmonary tuberculosis, cholera and so on¹. In the course of our study, EtOAc soluble fraction of twigs of it showed a significant inhibition on the tumor promotion. By the HPLC techniques, a new 2-substituted dihydrochromone derivative, named chaenomone (1) was isolated from the active part.

Compound **1** was yellow amorphous powder, mp>300°C (MeOH), $[\alpha]_D^{21}$ +115 (c = 0.048, MeOH). The molecular formula of C₂₆H₂₄O₁₀ was determined on the basis of FABMS (m/z 497[M+H]⁺) together with ¹³CNMR and ¹HNMR spectra data (**Table 1**). The ¹³CNMR spectrum showed 26 carbon signals, consisting of a conjugated carboxyl, eighteen olefinic, four carbinyl and three alkyl carbons. The ¹HNMR spectrum exhibited signals for a pair of meta-coupled aromatic protons (δ_H 5.91, d; 5.95, d, each 1H J = 2.0 Hz), a pair of para-coupled aromatic protons (δ_H 6.55, br s; 6.15, br s each 1H), and three hydrogen signals with an ABX coupling system [δ_H 7.04(1H, d, J = 2.0 Hz), 6.86(1H, dd, J = 8.5, 2.0 Hz), 6.81(1H, d, J = 8.5 Hz)] of a benzene ring. By HMQC spectrum, the direct connections between protons and carbons were identified. Compared the data with that of parts of known compounds²⁻³, the structure of **1** was presumed to be a dihydrochromone derivative with an alkyl group and a flavane residue. Further determination was carried out by HMBC and ¹H-¹H COSY (**Table 1**).

Table 1 ¹H, ¹³C NMR data HMBC and main ¹H-¹H COSY correlation of 1*

Hui Yuan GAO et al.

No. C	δ_{C}	$\delta_{\mathrm{H}}\left(J,\mathrm{Hz} ight)$	C long range correlated with the H (HMBC)	¹ H- ¹ H COSY
2	73.0	3 86 br s	$C-3 \alpha \beta$	Η-3 α
3	40.9	2.19 d (11.5) 2.96 d(11.5)	C-2 4 5 B 8'	H-2
4	193.7	, u (11.0),	c 2, 1, 5, p, 6	
5	164.7			
6	96.6	5.91 d (2.0)	C-5, 7, 8, 10	H-8
7	157.8			
8	95.4	5.95 d (2.0)	C-7, 9, 10	H-6
9	155.7			
10	98.8			
α	65.1	4.47 m	C-β, 2, 10	Η-2, β
β	25.0	2.66 dd (17.0, 5.0), 2.84 dd (17.0, 1.5)	C-2, α, 10, 7',8'	Η-α
2'	80.9	5.06 s	C-4', 1", 2", 6"	H-3'
3'	66.5	4.30 m		H-2'
4'	29.5	2.90 dd (17.0, 4.5), 2.81 dd (17.0, 1.5)	C-2', 3', 6'	
5'	113.3	6.55 s	C-6', 8'	
6'	104.5			
7'	166.6			
8'	91.8	6.15 s	C-5', 6', 7', 9', 10'	
9′	156.3			
10'	103.7			
1″	131.2			
2″	115.1	7.04 d (2.0)	C-3", 4", 5", 6"	H-6″
3‴	146.1			
4‴	146.2			
5‴	116.1	6.81 d (8.5)	C-1", 3", 4"	H-6″
6‴	119.2	6.86 dd (8.5, 2.0)	C-2", 3", 4"	H-2″,5′

*¹H: 500MHz and ¹³C: 125 MHz in CD₃OD

Figure 1 The structure and HMBC correlation of compound 1

References

- Zhong Hua Ben Cao, Shanghai Scientific Technique Publishing house, Shanghai, 1999, 4th p. 113. 1.
- 2. 3. I. Szilagi, *et al. Planta Med.*, **1981**, *43*, 121. K. R. Markham, B.Ternai *Tetrahedron*, **1976**, *32*, 2607.

Received 29 April, 2002